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Acoustic wave propagation in a one-dimensional layered system
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Propagation of acoustic waves in a one-dimensional water duct containing many air filled blocks is studied
by the transfer matrix formalism. Energy distribution and interface vibration of the air blocks are computed.
For periodic arrangement, band structure is calculated analytically, whereas the Lyapunov exponent and its
variance are computed numerically for random situations. A distinct collective behavior for localized waves is
found. The results are also compared with optical situations.
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I. INTRODUCTION tant characteristics of wave localization in a 1D system.
Fourth, we think that given the simplicity in the system, an

Propagation of waves in periodic and disordered medig@xperimental observation is quite possible. Last but not the
has been and continues to be an interesting subject for phydpast, the planar bubble system has been an integral part of
cists[1-16]. When propagating in media with inhomogene- the theoretical exploration of underwater gas bub@é4 In
ities, waves are subject to multiple scattering, which leads téhis article, the frequency band structures and wave transmis-
many peculiar phenomena such as band structures in peﬁion are computed numerically. We show that while our re-
odic media and wave localization in random meldiz—24. sults affirm the previous claim that all waves are localized

The propagation of waves in one-dimensiofitD) sys- inside a 1D medium with any amount of disorder, there are,
tems has attracted particular interest from scientists becau§@wever, a few distinctive features in our results. Among
in higher dimensions the interaction between waves and scaftem, in contrast to the optical cafs], there is no univer-
terers is so complicated that the theoretical computation i§al scaling behavior in the present system. In addition, when
rather involved and most solutions require a series of apwaves are localized, a collective behavior of the system
proximations that are not always justified, making it difficult emerges. We will also show the energy distribution in the
to relate theoretical predictions to experimental observationgvater duct. _ _

Yet wave localization in 1D poses a more manageable prob- This paper is organized as follows. In the next section we
lem that can be tackled in an exact manner by the transfe@xplain the model employed, discuss the transfer matrix
matrix method3—9,15. Moreover, results from 1D can pro- method, and derive relevant formulas. In Sec. lll numerical
vide insight to the problem of wave localization in generalfesults and discussions are given. We then summarize the
and are suitable for testing various ideas. Indeed, over thBaper in Sec. IV.

past decades considerable progress has been made in under-

standing the localization behavior in 1D disordered systems Il. MODEL AND METHOD

[3-9,15. However, a number of important issues remained
untouched. These issues include, for example, how waves
are localized inside the media and whether there is a distinct We study a system consisting of air blocks inside a water
feature for wave localization that would allow to differentiate duct. This system is chosen because air filled blocks are
the localization from residual absorption effect without am-strong acoustic scatterers. This can be seen as follows. The
biguity [13,14]. Results from the statistical analysis of the scattering is largely controlled by the acoustic impedance,
scaling behavior in 1D random media are not conclusivewhich is defined agc, with p andc being the mass density
Another question could be whether the localized state is @f the medium and the acoustic phase speed, respectively.
phase state that would accommodate a more systematic ifihe acoustic impedance ratio between water and air is about
terpretation[25]. All these motivate us to consider wave 3500. This large contrast leads to strong scattering, making
propagation in 1D media further, with emphasis on thethe system of air blocks in water an ideal candidate for the
acoustic wave propagation. study of acoustic scattering.

In this paper we study the problem of acoustic wave The 1D acoustic system we consider is illustrated by Fig.
propagation in a one-dimensional water duct containingl. Assume thaN air blocks of thickness; (j=1,... N) are
many air blocks either regularly or randomly, but on averageplaced regularly or randomly in a water duct with length
regularly distributed inside the duct. There are a few advanmeasured from the left boundafyB) of the duct. The dis-
tages in using such a 1D liquid system and it has been tance from the LB to the left interface of the first air block is
popular model for underwater acoustic problefagy.,[7]). D. For simplicity while without compromising generality, in
First, the system is simple enough to warrant the accurat&ter numerical computation we set the thickness of each air
extraction of many significant results. Second, the acoustiblock to the same value. The air fraction is clearly
impedance between air and water is so significant that a&=Na/L, the average distance between two adjacent air or
study of strong acoustic scattering is made possible. Thirdyater blocks is(d)=L/N=a/g, and the average thickness
this example is complicated enough to illustrate many imporof water blocks igb)= (D + Ej!\';llbj)/N. The degree of ran-

A. System setup
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D a b, a, b, a, b3 To proceed we define a state vector in the corresponding
layer as
W0 G1 W1 G2 W2 G3 W3 e (Sl(x)) A(X) ( AeikX ) ( )
X)=| = = —ikx | > 4
V=0 X, X, Y2 X3 V3 X, S B(x) Be

FIG. 1. Regular and random arrangements of air blocks in théhenp(x) andu(x) are expressed as linear combinations of
duct. The symbol§&;, W; denote the air and water layees;andb; the two components d§(x). In what follows we denote the
represent their thicknesses; tfta air block and the water separated state vector in thgth air block asG;j(x) with two com-
by thejth and (+1)th air blocks, denoted as thjen water block,  ponents Gjl(x)ZGjleikgx and GJ?(X):G]?e*ing' and in
is regarded as one unit and is labeled asjtheunit; therefored, the jth water block asw;(x) with W1(X):W;eikx and
=a;+b; represents the thickness of tfih unit. x =D+ 3/_1d 2 2 o~ ikx - L o

I | [=1% Wi (x) =Wje ™. Invoking the continuity condition gb and

=X t+a; t th iti f air-wat ter-ai - K
f"md Yi=X;7a; represent e posiions Ofa'r Waferfand wateralr | at the water-air interfaces that are located;afsee Fig. 1,
interfaces. For regular arrangementa, b;=b, dj=d=a+b and we find I

xj=D+(j—1)d, yj=x;+a.
— —1-1
domness for the system is controlled by a paramatén Wi-a(X)=3G,(x), - Gi(y))=J " Wj(yy),
such a way that the thickness of thth water block isb; with
=(b)(1+4;), &; being a random number within the interval
[—A,A]; the regular case correspondsie- 0. An acoustic . coshy sinhy
source placed at the LB generates monochromatic waves =q ( . ®
with an oscillationv (t)=ve™'“!. Transmitted waves propa-
gate through thé air blocks and travel to the right infinity. For wave propagation in thigh air or water layer, we have
In order to avoid unnecessary confusion, possible effects

sinhn coshy

from surface tension, viscosity, or any absorption are ne- Gj(x;)=Uq(a))Gj(y;), (6)
glected. ]
For convenience, we use the dimensionless quakgiy with
to measure the frequency, whére w/c is the wave number ~ikgaj 0
in water blocks. Similarlyk, represents the wave number in Ug(a)= ( € _ )
air blocks. We also define the following parameters for later S 0 e'ke?i |’
use
and
Py 2% K g pmng @ W, (y;)=U(b,)W 7
g= p ) - c - kg, g-=gn, n=ing. ](yj)_ ( J) j(Xj+l)1 ( )
with
B. Wave propagation and state vector kb, 0
e J
The problem of wave propagation is readily studied by U(bj)z( ikb_)_
the transfer matrix methddt]. In the following, we will only 0 e

briefly show the approach and present the relevant result
Dropping the time factore™'“!, the pressure wave(x)
within any layer(air block or water blockis the plane wave Mj=JUg(aj)J‘1U(bj) ®)

%rom these results the transfer matkix for the jth unit is

— ikx —ikx

pO)=Ae™+Be T, ) and the state vectors in water blocks satisfy
kX ;

where A€ represent_s;ktxh_e wave transmitted away from the W, 1(X) =M W,(X} 4 1) 9)
source to the rightBe is the wave reflected towards the
source and refers to the wave number in the correspondingTherefore any two state vectors of the water blocks are con-
medium. The velocity field, which describes the oscillation npected as
of the medium, is written as

Wi —1(X ) =M Wi (Xj,+1), (10

12

— 1 ’ _ 1 ikx —ikx
U(X)—@p (X)—E[Ae —Be ™, @ \where
where p refers to the mass density of the corresponding Mj i, =MjMjsa- My, Isjasje<N. (1D
layer. By invoking the continuity conditions of pressure and
velocity fields at the interfaces that separate water and aif;fom Egs.(8) and (11) one can easily prove that aM; ;.
and imposing the boundary conditions at two ends of theare unimodular matrices, a result of energy conservation. De-
system, the problem can be solved. fine
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Mo e My My, (12) ¥ Eim(i) (20)
W My My’ NTONT\ T
then a simple reduction leads to The fluctuation or variance of defined by
Mp=Mi,,  Ma=Mi;. 13 var(y)= lim ((y3)—{(y)? (22)
N— oo
It is clear that the transfer matrik,y connects the first
water block and the last water block. is a quantity that, as will be shown below, gives important
Imposing the boundary conditions at the LB information about the system.
1
v= —C[Wé—wg], (14) D. Energy distribution and phase vector
p
The time averaged energy densdi{x) atx are defined by
and )
p [Pl
W2=0 (15) En(0)= 7| lunl®+ 575 |. (22)
Pmbm

at the rightmost boundary, we obtain ) ) . o
By direct calculations we find that the energy density in our

pCv v 1D system is piecewise constant and hence we can suppress
— . (16)  the redundant variable. Energy density in thgth water
M. e IkD_M* eIkD W . . . g .
11 12 block £;" and in thejth air blockE7 are given by

Wo(Xq) =

*
12

By substituting Eq(16) into Eq.(10) and lettingj;=1 and

j2=1], the state vectow; and bothp andu in the jth layer eWo [ W2+ | W2[2] 23)
are determined. I oper ]
C. Lyapunov exponent and
Waves propagating througdt air blocks will be scattered
many times before they go out. The total transmission and 9= [|G»1|2+|G-2|2]. (24)
reflection rates can be obtained from the scattering matrix ! ZpQCS ! !
MS,

When waves propagate through media alternated with dif-
ferent material compositions, multiple scattering of waves is
established by an infinite recursive pattern of rescattering.
Writing p(x)=A(x)e' ™, with A(x)=|p(x)| and @ being
wheret andr are transmission and reflection coefficients, andthe amplitude and phase, respectively, the energy flow
T=|t|?> and R=|r|? define the transmission and reflection ~R¢i(p*(x)d,p(x)] becomesJ~AZ3,6. Obviously, the

. 1t r*/t*
S\t e )

rates. Based on the previous discussion energy flow will come to a complete halt and the waves are
s localized in space wheA is not equal to zero but phageis
MP=Mn=M 17) constant at least by domains.

From these observations, we propose to use the phase

and behavior of waves to characterize the wave localization. Ex-
ressingp(x) andu(x) as
. 1 :|M12|2 . p gp(x) (x)
§ |M g% " |Myg? PO =Ap(x)e' ) (25

Note that in Eq.(18) the relationTy+Ry=1 is satisfied, and

which is a consequence of energy conservation since the sys-

tem we considered does not absorb any energy. u(x)=A,(x)e u, (26)
It is well known that in a random medium waves are

always localized in space and the localization is characterwe construct two unit phase vectors as

ized by the Lyapunov exponefitE) y. The Lyapunov ex-

ponent is defined as JpEéx cosf,+ éy sing, (27)

y=lim (yn), (19

N— oo

and
with U, =€, C0S0,+€,sind,. (28)
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Physically, these phase vectors represent the oscillation be DISPERSION RELATION . BAND STRUCTURE
havior of the system. We can plot the phase vectors in a 8 ﬂﬁ=1e_4 © B=1e-4
two-dimensional plane. j - -B=3e-5 |
E. Band structure g, ) oY < S EE—
N | ¥
According to the Bloch theorem, the eigenmodes of wave ™ X~ Y
. - . - . . . . . . _ Clg 1 _/\
field p and velocity fieldu in an infinite periodic medium can Y
be written as 6 .
0 1 2 3 4 -1 -0.5 0 0.5 1
— KX — KX kb/n Kd/n
POX)=£()e™,  ux)=¢(x)e (29 ALLOWED BAND
4 4
where £(x) and £(x) are periodic functions satisfying(x ®) «@ Bi=3e=5
+d)=¢(x), {(x+d)=¢(x) andK is the usual Bloch wave 3 s T ey
number. & e —0u |
Equation(29) implies g2 g2
—IKAW . (% +d) =W (%)= (X, ! = | T
e KIW, (x;+d) =W, _1(x;) =MW,(x;+d), (30
0 0
whereM = M is the transfer matrix for a single urijperiod oMo T
and e %Y is the eigenvalue of matris. The dispersion
relation is given by FIG. 2. Various properties of periodic systefa) Dispersion

relations for air fractions8=10 * (solid line and B=3x10"°
cosKd=coskya coskb—cosh 2y sinkga sinkb. (31) (broken ling. Segments of curves inside the gray region bounded
by cosKd==*1 correspond to the propagating wavéslowed
The frequency ranges within which real solutions Kocan  band$, whereas those outside of the gray region represent evanes-
be deduced define the pass bands, while the ranges rendingnt wavegband gapk (b) Allowed band<ggray regiongversus air
the complex solutions foK determine the stop bandsand  fraction 8. (c) Band structure fo3=10"*. (d) Band structure for
gaps. B=3x10"°. HereK is the Bloch wave numbed is the lattice
spacing.
IIl. NUMERICAL RESULTS AND DISCUSSION . .
frequency gaps, the energy is trapped near the acoustic
A. Ordered cases source, and the energy density decays about exponentially

In the ordered case, the interference of multiply scattere@©nd the path. Meanwhile, the energy flow is calculated to
waves leads to frequency band structures. For frequencid®® Close to zero. . _
located in pass bands, waves propagate through the whole We now look at the oscillation behavior of the blocks. As
system, while for frequencies within a band gap, waves ar%scus.sed above, zero energy flow leads to a phase qoherence
evanescent. ehavior of the medium. Fgr the purpose we consider the

In Fig. 2a), cosKd versuskb/# from Eq. (31) are dis- behavior of the phase vectarg andv, defined in Eqs(27)
played for3=10"* (solid curvé and 3=3x10° (broken  and(28). Typical results of phase behavior are shown in Fig.
curve. The segments of curves between Kds-+1 (the 4. For further convenience, only the phase vectors at the
gray region give real solutions oKd and correspond to pass interfaces between air and water are shown. Symolp",
bands, whereas those outside of the gray region correspotti, U" appearing in Fig. 4 denote, respectively, the phase
to forbidden bands. Figure(l) shows the relation between Vvectors for the pressure and the velocity fields on the left and
the pass/forbidden bands and the fraction of air b|0ﬂ(gt rlght side of the air blocks. We set the vibration phase of the
is seen that fog>10"2 andkb> 3, the pass bands almost LB to 1. First we discuss the cases shown in Figs) and
vanish. The band structures for various bands are shown i#(b). The frequencies in Figs.(& and 4b) are chosen from
Figs. 2c) and 4d). We see that as the volume fractigh the first pass band. The phase vectors in these two cases
increases, the width of the pass bands decrease and the wigibint to various directions along the duct avﬁ,g} Jua&o, re-
of band gaps become larger. As expected from the earliesulting in a nonzero energy flow. The waves are extended in
discussion, the fact that air blocks are very strong acoustithe system. In Figs.(4) and 4d), the frequencies are chosen
scatterers in water leads to very wide band gaps and narrofkom the first band gap in which waves are evanescent as
pass bands shown in FigsicR and Zd). shown in Fig. 3. In this case, all the phase vectors of the

Figure 3 shows the energy density distribution along thepressure field are pointing to either/2 or — #/2, and are
duct for N=100 air blocks. In partsa), (b), (c), and(d), of  perpendicular to the phase vectors of the velocity field. The
Fig. 3(A), the energy density in water blocks is shown, pressure at the two sides of any air block is almost in phase.
whereas in part&), (b), (c), and(d) of Fig. 3B), the energy  Different from the higher-dimensional cases in which all
density in the air blocks is displayed. In the computation, thgphase vectors of localized fields point to the same direction
air fraction is taken ag=10"“. We find that for frequencies [11,16], the present phase vectors are constant only by do-
located in the pass bands, the energy density varies periodirains. The velocity field in neighboring domains oscillate
cally along the traveling path. For frequencies within thewith a phase differencer. At the far end of the sample,
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B) L 10° p=10~"
az) kb/r = 0.1

Q.6 20 40 60 80 100

o P9 kb/r = 0.35
FIG. 3. Energy density distributions along the
w2 duct at four different frequencieskb/7=0.02,
° 0 0.35, 0.4638, 0.9999A) Parts(a)—(d): Energy
0 2 40 60 B0 100 Qf 20 40 60 80 100 density in water blockgB) Parts(a)—(d): Energy
(c2) kb/r = 0.4638 density in air blocks. Number of air blocks

=100 and air fractionB=10"*. Vibration veloc-
ity of the LB is chosen as=1 m/s.

0
0 20 40 60 80 100 0 20 40 60 80 100
soof (dT) kb/x = 0.9999 300 {d2) kb/r = 0.9999
-
200 = 200
H ]
W 100 W 100
0 o
0 20 40 60 80 100 0 20 40 80 80 100
x/d xid

however, the phase vectors become gradually disoriented/4, the localization effect is weak. We also observe that with
implying that the energy can leak out only at the boundarnthe added disorder, the transmission is enhanced in the
due to the finite sample size. We note here that such a phaseiddle of the gaps. Similar enhancement due to disorder has
ordering not only exists for the boundaries of the air blocksalso been reported recenfl§]. Differing from [9], however,

but also appears inside the whole medium. the transmission at frequencies within the gaps of the corre-
sponding periodic arrays in the present system is not always
B. Disordered situations enhanced by disorder. Instead the transmission is reduced

Unlike in the ordered case for which waves can propa atéurther by the disorder near the band edges.
propag To further explore the transmission property, we calculate

through all air blocks if the frequency is located in the passa_‘ . . .
. . . e Lyapunov exponeny and its variance va() according
band, in a disordered 1D system waves are always localize b Egs. (19) and (21). The sample size is chosen in such a

In this section, we study numerically acoustic propagation 'any that it is much larger than the localization length and the

theF(ijli?;d;z;)eeriZ?{ts the tvpical results of the transmissionensemble average is carried out over 2000 random configu-
9 P yp rations. Figure 6 presents the results for the LE and its vari-

rate as a functloq ok{b) for. various/s at a given random- ance as a function d€(b)/= for various random configura-
ness. At frequencies for which the wavelength is smaller thar}

: : — . tions. As expected, when the randomness is small the LE
the averaged distance between air blocks, the transmission i . L
o ; . . . imics the band structures and the variance of the LE inside
significantly reduced by increasing air fraction.

. . the gaps is small. In contrast to the optical cgb8|, there
Figure g8b) illustrates the effect of the randomnesson 9ap P fs5)
transmission for a given air fraction. For comparison, the @ B=10" kbi=0.1 ) B=10"% Kbr=0.35

transmission in the corresponding regular arrdy=0) is NPT T 07~
also plotted. The gaps are located betwkén)/7=0.4638 P [\ "7 /1| \";,, PN T i
and 1, 1.21 and 2, 2.128 and 3, and so on. We find that foP | _ ;i\ .2/ VN>, AR
frequencies located inside the band gaps of the corresponc:n ,/\\\k,///‘ ‘\\\:,/f :n \/‘\L/ﬂ\ ‘\‘\ y ’\1\\
ing periodic array, the disorder-induced localization effect

competes yet reduces the band gap effect. To characteriz () B =107, kb/n=0.4638 (d) p =10"", kbin=0.9999
wave localization in this case, both the band gap and thepL I T T T B o R I Y R B R
disorder effects should be considered, supporting the WOk phpb bbbyl PR NARIRERTRENINY
parameter scaling theof5]. However, increasing disorder BLILINLNL IR J - ot LI J
tends to smear out the band structures. When exceeding W |~ -~ = = = = = |/ e = =+ - ~ -~

certain amount, the effect from the disorder suppresses the
band gap effect completely, and there is no distinction be- |G, 4. Phase vectors at air block boundaries. Total number of
tween the localization at frequencies within and outside thejr plocks isN= 15 and the air fraction ig=10"4. Four frequen-
band gaps. cies are chosen according to Fig. 3, thakis,7=0.02 and 0.35 in

Figure 5 shows that the localization behavior depends cruthe first allow band, anéib/=0.4638 and 0.9999 in the first gap.
cially on whether the wavelength is greater than the aver- In the diagrams, the small arrows are used to represent the phase
age distance between air blocks. Wh@)/\ is less than vectors.
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Yan e AN .
Narmos a’“"""“"’bo‘ 1

— f=1o-4
- - f=3e-5
vt f=le-5

TRANSMISSION

FIG. 5. Transmission versugb)/ar for vari-
ous air fractions a\=0.3 (a) and different dis-
orders(b). The number of the air blocks is 100.

TRANSMISSION

0.5 1

1.5 2
k(b)/n

are no double maxima for the variance inside the gapdouble peaks in the variance are destroyed, the minima of the
Rather, the double peaks appear in the allowed bands whetk correspond to the maxima of its variance. This is differ-
the system is disordered. The double peak feature is morent from the optical casgl5].

prominent in the low frequency bands. When the randomness With increasing disorder, we do not observe the genuine
exceeds a certain value, however, the double peaks emerdmear dependence between the LE and its variance, as ex-
Higher the frequency, lower is the critical value. For ex-pected from the single-parameter scaling the@4|, indi-
ample, the double peaks are still visible in the first allowedcating that the single-parameter scaling law may not be ap-
band[cf. Fig. 6b)], while there is only one peak inside the plicable in the present system.

higher pass bands. Meanwhile, the increasing disorder re- Equationg23) and(24) provide the formulas for studying
duces the band gap effect and smears out the oscillation i@nergy distributions in any situation. As discussed in the
the LE, in accordance with Fig. 6. We also plot the LE ver-regular case, when the wave is localized, a kind of ordering
sus its variance in Fig. 6. When randomness is weak, severaf the phase vectors appears. From the alignment pattern of
branches appear in the LE-variance relation. The frequencghase vectors we can know whether waves inside the system
range of a branch covers a pass band. In the optical case, thee localized. For air fractiog=10"4, three different cases
frequency range of a branch covers a gap insfd&d A with differentk(b)/ar, A, andN are shown in Figs. 7, 8, and
prominent feature in the present system is that when th®. To isolate the localization effect from the band gap effects,

25

[\
el

_ 2%l a=0.008 /\\ 0.042°[(®) A=0.05 / \\ lc) A=1.0 0.2
'

g > ~ 4 2 ~ P05
8 /Y T 1oos A 0.15
2 [ \ rov 8
X185 TR TN R g

! 1 1 g 1
2 Y ! ) 1 1
3, N |I I,o.021 N 1 | , ) o.15
H 1 W\ [ ! >
g fhon TR 0.05 !

. 4
Sosf T 0015l 1 ) Y 0.05
1 oy FIG. 6. (a), (b), and(c) show the Lyapunov
0 o o 0

0.012}(d) A=0.008

exponent(LE) in broken lines and its variance in
solid lines as a function df(b)/ for three ran-
dom situations(d), (e), and(f) present the plots
of the exponent versus its variance in the three

A _
oot gy, 004 'ﬁ random cases. Herg=10"*.
§o.oos fy § : Y
< [\ < 0.03 ‘I'l‘
& 0.006 z
< A < .
Zo004|]% & > 002 By
1 \" ‘\.:1 LY
o.002/8; 1 001 e NN WA
ot R NI o
0 1 2 0 1 2 0 1 2
LYAPUNOV EXPONENT LYAPUNOV EXPONENT LYAPUNOV EXPONENT

066611-6



ACOUSTIC WAVE PROPAGATION IN AONE. .. PHYSICAL REVIEW E 63 066611

(a) 10B=10" 4=0.3, K b)/n=0.25 © PHASE DIAGRAMS (@) 7 B=10"% A=1, K br=0.25 © PHASE DIAGRAMS
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FIG. 7. Energy density distributions along the duct in air blocks  F|G. 9. Energy density distributions along the duct in air blocks
(a) and in water blockeb). Phase vectors at the interfaces for three (g) and in water blocksb). Phase vectors at the interfaces for three
spatial ranges of the medium are illustrated(@. The unit of  spatial ranges of the medium are illustrated (@. The unit of
energy density is J/f air fraction 5=10"%, k(b)/m=0.25, A energy density is J/f air fraction 5=10"%, k(b)/m=0.25, A
=2~3, /N=1500~ Vibration velocity of the LB is chosen as =1, N=150. Vibration velocity of the LB is chosen as=1 ms.
= m/s.
for any given amount of randomness. When localized, the
aves are trapped inside the medium, but not necessarily
onfined at the site of the source, unless the band gap effect
5 dominant. The energy distribution does not follow an ex-

we choose the two frequencies located in the first allowe
band: one is in the middle of the band and the other is neg

the lower band edge. o _ onential decay along the path. This differs from situations
First, we note that the energy density is constant in eacﬁ% higher dimensiong10,16. It is also shown that the energy

individual block. This is a special feature of 1D classical stored in the medium can be tremendous.

systems and can be verified by a deduction from E283) These figures also show that for low frequencies and
and (24). From these figures, we observe that when theyhen the randomness is small, to trap the waves a large
sample size is sufficiently large, waves are always localizegiumber of air blocks is needed. Like in the regular cases,
when waves are localized, the coherent behavior of the me-
dium appears, and the phases are constant by domains. The

—4
(@) 1gB=10"", 4=0.3, k( b)n=0.46 (°’L : P“:‘SE D":G"A":s : phase vector domains are sensitive to the arrangement of the
° Lo air blocks. Moreover, when localization is evident, increas-
g ing the sample size by adding more air blocks to the far end
2 A of the system will not change the patterns of the energy

. u O”““z "4 ”6* 8* 1;’ distribution and phase vectors. Therefore the energy localiza-

tion and the phase coherence behavior are not caused by the

. A boundary effect.

S T I B Figure 7 shows the energy distribution inside the medium.
® N Here we choos&(b)/=0.25, which is inside the first pass
500 B - — —— = band. We see that the energies are localized in both air and
3000 2o o 2 2 28 water blocks. However, unlike in the regular cases, the en-
2500 ergy does not always decay exponentially along the path. In

2 2000 Fle te M T e Fig. 8 we use the same parameters as in Fig. 7 except that we
1s00r TR choosek(b)/=0.46, which is very close to the gap edge
1000 WL N R 0.4638. We see now that waves can be very easily trapped by
5°2TH1JH L. PE = S using onlyN=50 air blocks. In Fig. 9 we choose(b)/

o 1 2°x,<d>3° o s 04 “;Kd)“‘* ® %0 =0.25 as used in Fig. 7 but increase the randomness to

=1, waves are trapped bBy=150 air blocks, fewer than in
FIG. 8. Energy density distributions along the duct in air blocksthe case of Fig. 7.
(a) and in water blocksb). Phase vectors at the interfaces for three

spatial ranges of the medium are illustrated(@). The unit of IV. CONCLUDING REMARKS

energy density is J/f air fraction 8=10"%, k(b)/7=0.46, A

=0.3, N=50. Vibration velocity of the LB is chosen as In this paper we studied the propagation of acoustic
=1 mis. waves in 1D layered system consisting of air and water
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blocks. For periodically placed air blocks, the band struc-appearance of such a collective phenomenon may be re-
tures were studied and were shown to have large band gapgarded as an indication of a kind of classical Goldstone
For the case of randomly placed air blocks, the transmissiormodes in the context of the field thedig5s].

Lyapunov exponent and its variance, energy distribution and

medium vibration were studied. The results pointed out that

waves are always confined in a finite spatial region. The ACKNOWLEDGMENT

disorder leads to a significant energy storage in the system. It
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