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Acoustic wave propagation in a one-dimensional layered system
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Propagation of acoustic waves in a one-dimensional water duct containing many air filled blocks is studied
by the transfer matrix formalism. Energy distribution and interface vibration of the air blocks are computed.
For periodic arrangement, band structure is calculated analytically, whereas the Lyapunov exponent and its
variance are computed numerically for random situations. A distinct collective behavior for localized waves is
found. The results are also compared with optical situations.

DOI: 10.1103/PhysRevE.63.066611 PACS number~s!: 43.20.1g, 71.55.Jv
d
y

e-
s
pe

au
c

n
ap
lt
n

ro
sf
-
ra
th
n
m
e
v

tin
te
m
e
ve
is
c
e
h

ve
in
g
an
n

ra
st
t
ir
o

m.
an
the
rt of

mis-
re-
ed
re,
ng

hen
em
he

we
trix
cal
the

ter
are
The
ce,
y
vely.
bout
ing

the

ig.

is
n

air

r or
s

I. INTRODUCTION

Propagation of waves in periodic and disordered me
has been and continues to be an interesting subject for ph
cists @1–16#. When propagating in media with inhomogen
ities, waves are subject to multiple scattering, which lead
many peculiar phenomena such as band structures in
odic media and wave localization in random media@17–24#.

The propagation of waves in one-dimensional~1D! sys-
tems has attracted particular interest from scientists bec
in higher dimensions the interaction between waves and s
terers is so complicated that the theoretical computatio
rather involved and most solutions require a series of
proximations that are not always justified, making it difficu
to relate theoretical predictions to experimental observatio
Yet wave localization in 1D poses a more manageable p
lem that can be tackled in an exact manner by the tran
matrix method@3–9,15#. Moreover, results from 1D can pro
vide insight to the problem of wave localization in gene
and are suitable for testing various ideas. Indeed, over
past decades considerable progress has been made in u
standing the localization behavior in 1D disordered syste
@3–9,15#. However, a number of important issues remain
untouched. These issues include, for example, how wa
are localized inside the media and whether there is a dis
feature for wave localization that would allow to differentia
the localization from residual absorption effect without a
biguity @13,14#. Results from the statistical analysis of th
scaling behavior in 1D random media are not conclusi
Another question could be whether the localized state
phase state that would accommodate a more systemati
terpretation@25#. All these motivate us to consider wav
propagation in 1D media further, with emphasis on t
acoustic wave propagation.

In this paper we study the problem of acoustic wa
propagation in a one-dimensional water duct contain
many air blocks either regularly or randomly, but on avera
regularly distributed inside the duct. There are a few adv
tages in using such a 1D liquid system and it has bee
popular model for underwater acoustic problems~e.g., @7#!.
First, the system is simple enough to warrant the accu
extraction of many significant results. Second, the acou
impedance between air and water is so significant tha
study of strong acoustic scattering is made possible. Th
this example is complicated enough to illustrate many imp
1063-651X/2001/63~6!/066611~8!/$20.00 63 0666
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tant characteristics of wave localization in a 1D syste
Fourth, we think that given the simplicity in the system,
experimental observation is quite possible. Last but not
least, the planar bubble system has been an integral pa
the theoretical exploration of underwater gas bubbles@26#. In
this article, the frequency band structures and wave trans
sion are computed numerically. We show that while our
sults affirm the previous claim that all waves are localiz
inside a 1D medium with any amount of disorder, there a
however, a few distinctive features in our results. Amo
them, in contrast to the optical case@15#, there is no univer-
sal scaling behavior in the present system. In addition, w
waves are localized, a collective behavior of the syst
emerges. We will also show the energy distribution in t
water duct.

This paper is organized as follows. In the next section
explain the model employed, discuss the transfer ma
method, and derive relevant formulas. In Sec. III numeri
results and discussions are given. We then summarize
paper in Sec. IV.

II. MODEL AND METHOD

A. System setup

We study a system consisting of air blocks inside a wa
duct. This system is chosen because air filled blocks
strong acoustic scatterers. This can be seen as follows.
scattering is largely controlled by the acoustic impedan
which is defined asrc, with r andc being the mass densit
of the medium and the acoustic phase speed, respecti
The acoustic impedance ratio between water and air is a
3500. This large contrast leads to strong scattering, mak
the system of air blocks in water an ideal candidate for
study of acoustic scattering.

The 1D acoustic system we consider is illustrated by F
1. Assume thatN air blocks of thicknessaj ( j 51, . . . ,N) are
placed regularly or randomly in a water duct with lengthL
measured from the left boundary~LB! of the duct. The dis-
tance from the LB to the left interface of the first air block
D. For simplicity while without compromising generality, i
later numerical computation we set the thickness of each
block to the same valuea. The air fraction is clearlyb
5Na/L, the average distance between two adjacent ai
water blocks iŝ d&5L/N5a/b, and the average thicknes
of water blocks iŝ b&5(D1( j 51

N21bj )/N. The degree of ran-
©2001 The American Physical Society11-1
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domness for the system is controlled by a parameterD in
such a way that the thickness of thej th water block isbj
5^b&(11d j ), d j being a random number within the interv
@2D,D#; the regular case corresponds toD50. An acoustic
source placed at the LB generates monochromatic wa
with an oscillationv(t)5ve2 ivt. Transmitted waves propa
gate through theN air blocks and travel to the right infinity
In order to avoid unnecessary confusion, possible effe
from surface tension, viscosity, or any absorption are
glected.

For convenience, we use the dimensionless quantityk^b&
to measure the frequency, wherek5v/c is the wave number
in water blocks. Similarly,kg represents the wave number
air blocks. We also define the following parameters for la
use

g5
rg

r
, h5

cg

c
5

k

kg
, q25gh, h5 ln q. ~1!

B. Wave propagation and state vector

The problem of wave propagation is readily studied
the transfer matrix method@4#. In the following, we will only
briefly show the approach and present the relevant res
Dropping the time factore2 ivt, the pressure wavep(x)
within any layer~air block or water block! is the plane wave

p~x!5Aeikx1Be2 ikx, ~2!

whereAeikx represents the wave transmitted away from
source to the right,Be2 ikx is the wave reflected towards th
source andk refers to the wave number in the correspond
medium. The velocity fieldu, which describes the oscillatio
of the medium, is written as

u~x!5
1

ivr
p8~x!5

1

rc
@Aeikx2Be2 ikx#, ~3!

where r refers to the mass density of the correspond
layer. By invoking the continuity conditions of pressure a
velocity fields at the interfaces that separate water and
and imposing the boundary conditions at two ends of
system, the problem can be solved.

FIG. 1. Regular and random arrangements of air blocks in
duct. The symbolsGj , W j denote the air and water layers;aj andbj

represent their thicknesses; thej th air block and the water separate
by the j th and (j 11)th air blocks, denoted as thej th water block,
is regarded as one unit and is labeled as thej th unit; thereforedj

5aj1bj represents the thickness of thej th unit. xj5D1( l 51
j 21dl

and yj5xj1aj represent the positions of air-water and water-
interfaces. For regular arrangementaj5a, bj5b, dj5d5a1b and
xj5D1( j 21)d, yj5xj1a.
06661
es

ts
-

r

ts.

e

g

ir,
e

To proceed we define a state vector in the correspond
layer as

S~x![S S1~x!

S2~x!
D 5S A~x!

B~x!
D 5S Aeikx

Be2 ikxD , ~4!

thenp(x) andu(x) are expressed as linear combinations
the two components ofS(x). In what follows we denote the
state vector in thej th air block asGj (x) with two com-
ponents Gj

1(x)5Gj
1eikgx and Gj

2(x)5Gj
2e2 ikgx, and in

the j th water block asW j (x) with Wj
1(x)5Wj

1eikx and
Wj

2(x)5Wj
2e2 ikx. Invoking the continuity condition ofp and

u at the water-air interfaces that are located atxj ~see Fig. 1!,
we find

W j 21~xj !5JGj~xj !, Gj~yj !5J21W j~yj !,

with

J5q21S coshh sinhh

sinhh coshh D . ~5!

For wave propagation in thej th air or water layer, we have

Gj~xj !5Ug~aj !Gj~yj !, ~6!

with

Ug~aj !5S e2 ikgaj 0

0 eikgaj
D ,

and

W j~yj !5U~bj !W j~xj 11!, ~7!

with

U~bj !5S e2 ikbj 0

0 eikbj
D .

From these results the transfer matrixM j for the j th unit is

M j5JUg~aj !J
21U~bj ! ~8!

and the state vectors in water blocks satisfy

W j 21~xj !5M jW j~xj 11!. ~9!

Therefore any two state vectors of the water blocks are c
nected as

W j 121~xj 1
!5M j 1 , j 2

W j 2
~xj 211!, ~10!

where

M j 1 , j 2
5M j 1

M j 111•••M j 2
, 1< j 1< j 2<N. ~11!

From Eqs.~8! and ~11! one can easily prove that allM j 1 , j 2

are unimodular matrices, a result of energy conservation.
fine

e

r
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M1,N[M5S M11 M12

M21 M22
D , ~12!

then a simple reduction leads to

M215M12* , M225M11* . ~13!

It is clear that the transfer matrixM1,N connects the first
water block and the last water block.

Imposing the boundary conditions at the LB

v5
1

rc
@W0

12W0
2#, ~14!

and

WN
2 50 ~15!

at the rightmost boundary, we obtain

W0~x1!5
rcv

M11e2 ikD2M12* eikD S M11

M12*
D . ~16!

By substituting Eq.~16! into Eq. ~10! and lettingj 151 and
j 25 j , the state vectorW j and bothp andu in the j th layer
are determined.

C. Lyapunov exponent

Waves propagating throughN air blocks will be scattered
many times before they go out. The total transmission
reflection rates can be obtained from the scattering ma
Ms,

Ms5S 1/t r * /t*

r /t 1/t* D ,

wheret andr are transmission and reflection coefficients, a
T5utu2 and R5ur u2 define the transmission and reflectio
rates. Based on the previous discussion

Ms5M1,N5M ~17!

and

TN5
1

uM 11u2
, RN5

uM 12u2

uM 11u2
. ~18!

Note that in Eq.~18! the relationTN1RN51 is satisfied,
which is a consequence of energy conservation since the
tem we considered does not absorb any energy.

It is well known that in a random medium waves a
always localized in space and the localization is charac
ized by the Lyapunov exponent~LE! g. The Lyapunov ex-
ponent is defined as

g5 lim
N→`

^gN&, ~19!

with
06661
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gN[
1

2N
lnS 1

TN
D . ~20!

The fluctuation or variance ofg defined by

var~g!5 lim
N→`

~^gN
2 &2^gN&2! ~21!

is a quantity that, as will be shown below, gives importa
information about the system.

D. Energy distribution and phase vector

The time averaged energy densityE(x) at x are defined by

Em~x!5
rm

4 F uumu21
upmu2

rm
2 cm

2 G . ~22!

By direct calculations we find that the energy density in o
1D system is piecewise constant and hence we can supp
the redundant variablex. Energy density in thej th water
block E j

w and in thej th air blockE j
g are given by

E j
w5

1

2r c2
@ uWj

1u21uWj
2u2# ~23!

and

E j
g5

1

2rgcg
2 @ uGj

1u21uGj
2u2#. ~24!

When waves propagate through media alternated with
ferent material compositions, multiple scattering of waves
established by an infinite recursive pattern of rescatter
Writing p(x)5A(x)eiu(x), with A(x)5up(x)u and u being
the amplitude and phase, respectively, the energy flowJ
;Re@ i (p* (x)]xp(x)# becomesJ;A2]xu. Obviously, the
energy flow will come to a complete halt and the waves
localized in space whenA is not equal to zero but phaseu is
constant at least by domains.

From these observations, we propose to use the ph
behavior of waves to characterize the wave localization.
pressingp(x) andu(x) as

p~x![Ap~x!eiup(x) ~25!

and

u~x![Au~x!eiuu(x), ~26!

we construct two unit phase vectors as

vW p[êx cosup1êy sinup ~27!

and

vW u[êx cosuu1êy sinuu . ~28!
1-3
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Physically, these phase vectors represent the oscillation
havior of the system. We can plot the phase vectors i
two-dimensional plane.

E. Band structure

According to the Bloch theorem, the eigenmodes of wa
field p and velocity fieldu in an infinite periodic medium can
be written as

p~x!5j~x!eiKx, u~x!5z~x!eiKx ~29!

where j(x) and z(x) are periodic functions satisfyingj(x
1d)5j(x), z(x1d)5z(x) andK is the usual Bloch wave
number.

Equation~29! implies

e2 iKdW j~xj1d!5W j 21~xj !5MW j~xj1d!, ~30!

whereM5M j is the transfer matrix for a single unit~period!
and e2 iKd is the eigenvalue of matrixM. The dispersion
relation is given by

cosKd5coskga coskb2cosh 2h sinkga sinkb. ~31!

The frequency ranges within which real solutions forK can
be deduced define the pass bands, while the ranges ren
the complex solutions forK determine the stop bands~band
gaps!.

III. NUMERICAL RESULTS AND DISCUSSION

A. Ordered cases

In the ordered case, the interference of multiply scatte
waves leads to frequency band structures. For frequen
located in pass bands, waves propagate through the w
system, while for frequencies within a band gap, waves
evanescent.

In Fig. 2~a!, cosKd versuskb/p from Eq. ~31! are dis-
played forb51024 ~solid curve! and b5331025 ~broken
curve!. The segments of curves between cosKd561 ~the
gray region! give real solutions ofKd and correspond to pas
bands, whereas those outside of the gray region corresp
to forbidden bands. Figure 2~b! shows the relation betwee
the pass/forbidden bands and the fraction of air blocks,b. It
is seen that forb.1023 andkb.3p, the pass bands almos
vanish. The band structures for various bands are show
Figs. 2~c! and 2~d!. We see that as the volume fractionb
increases, the width of the pass bands decrease and the
of band gaps become larger. As expected from the ea
discussion, the fact that air blocks are very strong acou
scatterers in water leads to very wide band gaps and na
pass bands shown in Figs. 2~c! and 2~d!.

Figure 3 shows the energy density distribution along
duct for N5100 air blocks. In parts~a!, ~b!, ~c!, and~d!, of
Fig. 3~A!, the energy density in water blocks is show
whereas in parts~a!, ~b!, ~c!, and~d! of Fig. 3~B!, the energy
density in the air blocks is displayed. In the computation,
air fraction is taken asb51024. We find that for frequencies
located in the pass bands, the energy density varies per
cally along the traveling path. For frequencies within t
06661
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frequency gaps, the energy is trapped near the acou
source, and the energy density decays about exponent
along the path. Meanwhile, the energy flow is calculated
be close to zero.

We now look at the oscillation behavior of the blocks. A
discussed above, zero energy flow leads to a phase cohe
behavior of the medium. For the purpose we consider
behavior of the phase vectorsvW p andvW u defined in Eqs.~27!
and~28!. Typical results of phase behavior are shown in F
4. For further convenience, only the phase vectors at
interfaces between air and water are shown. SymbolspL, pR,
uL, uR appearing in Fig. 4 denote, respectively, the pha
vectors for the pressure and the velocity fields on the left
right side of the air blocks. We set the vibration phase of
LB to 1. First we discuss the cases shown in Figs. 4~a! and
4~b!. The frequencies in Figs. 4~a! and 4~b! are chosen from
the first pass band. The phase vectors in these two c
point to various directions along the duct andvW p•vW uÞ0, re-
sulting in a nonzero energy flow. The waves are extende
the system. In Figs. 4~c! and 4~d!, the frequencies are chose
from the first band gap in which waves are evanescen
shown in Fig. 3. In this case, all the phase vectors of
pressure field are pointing to eitherp/2 or 2p/2, and are
perpendicular to the phase vectors of the velocity field. T
pressure at the two sides of any air block is almost in pha
Different from the higher-dimensional cases in which
phase vectors of localized fields point to the same direc
@11,16#, the present phase vectors are constant only by
mains. The velocity field in neighboring domains oscilla
with a phase differencep. At the far end of the sample

FIG. 2. Various properties of periodic system.~a! Dispersion
relations for air fractionsb51024 ~solid line! and b5331025

~broken line!. Segments of curves inside the gray region bound
by cosKd561 correspond to the propagating waves~allowed
bands!, whereas those outside of the gray region represent eva
cent waves~band gaps!. ~b! Allowed bands~gray regions! versus air
fraction b. ~c! Band structure forb51024. ~d! Band structure for
b5331025. Here K is the Bloch wave number,d is the lattice
spacing.
1-4
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FIG. 3. Energy density distributions along th
duct at four different frequencies:kb/p50.02,
0.35, 0.4638, 0.9999.~A! Parts~a!–~d!: Energy
density in water blocks.~B! Parts~a!–~d!: Energy
density in air blocks. Number of air blocksN
5100 and air fractionb51024. Vibration veloc-
ity of the LB is chosen asv51 m/s.
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however, the phase vectors become gradually disorien
implying that the energy can leak out only at the bound
due to the finite sample size. We note here that such a p
ordering not only exists for the boundaries of the air bloc
but also appears inside the whole medium.

B. Disordered situations

Unlike in the ordered case for which waves can propag
through all air blocks if the frequency is located in the pa
band, in a disordered 1D system waves are always locali
In this section, we study numerically acoustic propagation
the disordered case.

Figure 5~a! presents the typical results of the transmiss
rate as a function ofk^b& for variousb at a given random-
ness. At frequencies for which the wavelength is smaller t
the averaged distance between air blocks, the transmissi
significantly reduced by increasing air fraction.

Figure 5~b! illustrates the effect of the randomnessD on
transmission for a given air fraction. For comparison,
transmission in the corresponding regular array (D50) is
also plotted. The gaps are located betweenk^b&/p50.4638
and 1, 1.21 and 2, 2.128 and 3, and so on. We find that
frequencies located inside the band gaps of the corresp
ing periodic array, the disorder-induced localization effe
competes yet reduces the band gap effect. To charact
wave localization in this case, both the band gap and
disorder effects should be considered, supporting the t
parameter scaling theory@15#. However, increasing disorde
tends to smear out the band structures. When exceedi
certain amount, the effect from the disorder suppresses
band gap effect completely, and there is no distinction
tween the localization at frequencies within and outside
band gaps.

Figure 5 shows that the localization behavior depends
cially on whether the wavelengthl is greater than the aver
age distance between air blocks. When^b&/l is less than
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1/4, the localization effect is weak. We also observe that w
the added disorder, the transmission is enhanced in
middle of the gaps. Similar enhancement due to disorder
also been reported recently@9#. Differing from @9#, however,
the transmission at frequencies within the gaps of the co
sponding periodic arrays in the present system is not alw
enhanced by disorder. Instead the transmission is redu
further by the disorder near the band edges.

To further explore the transmission property, we calcul
the Lyapunov exponentg and its variance var(g) according
to Eqs.~19! and ~21!. The sample size is chosen in such
way that it is much larger than the localization length and
ensemble average is carried out over 2000 random confi
rations. Figure 6 presents the results for the LE and its v
ance as a function ofk^b&/p for various random configura
tions. As expected, when the randomness is small the
mimics the band structures and the variance of the LE ins
the gaps is small. In contrast to the optical case@15#, there

FIG. 4. Phase vectors at air block boundaries. Total numbe
air blocks isN515 and the air fraction isb51024. Four frequen-
cies are chosen according to Fig. 3, that is,kb/p50.02 and 0.35 in
the first allow band, andkb/p50.4638 and 0.9999 in the first gap
In the diagrams, the small arrows are used to represent the p
vectors.
1-5
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FIG. 5. Transmission versusk^b&/p for vari-
ous air fractions atD50.3 ~a! and different dis-
orders~b!. The number of the air blocks is 100.
ap
h
o
e
er
x-
e
e
r

n
r
e
n
,

th

f the
r-

ine
ex-

ap-

the
ing
n of
tem

ts,
are no double maxima for the variance inside the g
Rather, the double peaks appear in the allowed bands w
the system is disordered. The double peak feature is m
prominent in the low frequency bands. When the randomn
exceeds a certain value, however, the double peaks em
Higher the frequency, lower is the critical value. For e
ample, the double peaks are still visible in the first allow
band@cf. Fig. 6~b!#, while there is only one peak inside th
higher pass bands. Meanwhile, the increasing disorder
duces the band gap effect and smears out the oscillatio
the LE, in accordance with Fig. 6. We also plot the LE ve
sus its variance in Fig. 6. When randomness is weak, sev
branches appear in the LE-variance relation. The freque
range of a branch covers a pass band. In the optical case
frequency range of a branch covers a gap instead@15#. A
prominent feature in the present system is that when
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double peaks in the variance are destroyed, the minima o
LE correspond to the maxima of its variance. This is diffe
ent from the optical case@15#.

With increasing disorder, we do not observe the genu
linear dependence between the LE and its variance, as
pected from the single-parameter scaling theory@24#, indi-
cating that the single-parameter scaling law may not be
plicable in the present system.

Equations~23! and~24! provide the formulas for studying
energy distributions in any situation. As discussed in
regular case, when the wave is localized, a kind of order
of the phase vectors appears. From the alignment patter
phase vectors we can know whether waves inside the sys
are localized. For air fractionb51024, three different cases
with differentk^b&/p, D, andN are shown in Figs. 7, 8, and
9. To isolate the localization effect from the band gap effec
ee
FIG. 6. ~a!, ~b!, and ~c! show the Lyapunov
exponent~LE! in broken lines and its variance in
solid lines as a function ofk^b&/p for three ran-
dom situations.~d!, ~e!, and ~f! present the plots
of the exponent versus its variance in the thr
random cases. Hereb51024.
1-6



e
e

ac
a

th
ze

the
arily
ffect
x-
ns
y

nd
rge
es,
me-
. The
f the
s-
nd

rgy
iza-
y the

m.
s
and
en-
. In
t we
e

d by

o

tic
ter

ks
ee

ks
ee

ks
ee

ACOUSTIC WAVE PROPAGATION IN A ONE- . . . PHYSICAL REVIEW E 63 066611
we choose the two frequencies located in the first allow
band: one is in the middle of the band and the other is n
the lower band edge.

First, we note that the energy density is constant in e
individual block. This is a special feature of 1D classic
systems and can be verified by a deduction from Eqs.~23!
and ~24!. From these figures, we observe that when
sample size is sufficiently large, waves are always locali

FIG. 7. Energy density distributions along the duct in air bloc
~a! and in water blocks~b!. Phase vectors at the interfaces for thr
spatial ranges of the medium are illustrated in~c!. The unit of
energy density is J/m3, air fraction b51024, k^b&/p50.25, D
50.3, N51500. Vibration velocity of the LB is chosen asv
51 m/s.

FIG. 8. Energy density distributions along the duct in air bloc
~a! and in water blocks~b!. Phase vectors at the interfaces for thr
spatial ranges of the medium are illustrated in~c!. The unit of
energy density is J/m3, air fraction b51024, k^b&/p50.46, D
50.3, N550. Vibration velocity of the LB is chosen asv
51 m/s.
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for any given amount of randomness. When localized,
waves are trapped inside the medium, but not necess
confined at the site of the source, unless the band gap e
is dominant. The energy distribution does not follow an e
ponential decay along the path. This differs from situatio
in higher dimensions@10,16#. It is also shown that the energ
stored in the medium can be tremendous.

These figures also show that for low frequencies a
when the randomness is small, to trap the waves a la
number of air blocks is needed. Like in the regular cas
when waves are localized, the coherent behavior of the
dium appears, and the phases are constant by domains
phase vector domains are sensitive to the arrangement o
air blocks. Moreover, when localization is evident, increa
ing the sample size by adding more air blocks to the far e
of the system will not change the patterns of the ene
distribution and phase vectors. Therefore the energy local
tion and the phase coherence behavior are not caused b
boundary effect.

Figure 7 shows the energy distribution inside the mediu
Here we choosek^b&/p50.25, which is inside the first pas
band. We see that the energies are localized in both air
water blocks. However, unlike in the regular cases, the
ergy does not always decay exponentially along the path
Fig. 8 we use the same parameters as in Fig. 7 except tha
choosek^b&/p50.46, which is very close to the gap edg
0.4638. We see now that waves can be very easily trappe
using onlyN550 air blocks. In Fig. 9 we choosek^b&/p
50.25 as used in Fig. 7 but increase the randomness tD
51, waves are trapped byN5150 air blocks, fewer than in
the case of Fig. 7.

IV. CONCLUDING REMARKS

In this paper we studied the propagation of acous
waves in 1D layered system consisting of air and wa

FIG. 9. Energy density distributions along the duct in air bloc
~a! and in water blocks~b!. Phase vectors at the interfaces for thr
spatial ranges of the medium are illustrated in~c!. The unit of
energy density is J/m3, air fraction b51024, k^b&/p50.25, D
51, N5150. Vibration velocity of the LB is chosen asv51 m/s.
1-7
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blocks. For periodically placed air blocks, the band str
tures were studied and were shown to have large band g
For the case of randomly placed air blocks, the transmiss
Lyapunov exponent and its variance, energy distribution
medium vibration were studied. The results pointed out t
waves are always confined in a finite spatial region. T
disorder leads to a significant energy storage in the syste
is also indicated that the wave localization is related to
collective behavior of the system in the presence of multi
scattering, also observed for higher dimensions@11,16#. The
om
,

m

.

.

s

an

06661
-
ps.
n,
d
t

e
. It
a
e

appearance of such a collective phenomenon may be
garded as an indication of a kind of classical Goldsto
modes in the context of the field theory@25#.
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